Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474099

RESUMEN

Hypercapnia occurs when the partial pressure of carbon dioxide (CO2) in the blood exceeds 45 mmHg. Hypercapnia is associated with several lung pathologies and is transcriptionally linked to suppression of immune and inflammatory signalling through poorly understood mechanisms. Here we propose Orphan Nuclear Receptor Family 4A (NR4A) family members NR4A2 and NR4A3 as potential transcriptional regulators of the cellular response to hypercapnia in monocytes. Using a THP-1 monocyte model, we investigated the sensitivity of NR4A family members to CO2 and the impact of depleting NR4A2 and NR4A3 on the monocyte response to buffered hypercapnia (10% CO2) using RNA-sequencing. We observed that NR4A2 and NR4A3 are CO2-sensitive transcription factors and that depletion of NR4A2 and NR4A3 led to reduced CO2-sensitivity of mitochondrial and heat shock protein (Hsp)-related genes, respectively. Several CO2-sensitive genes were, however, refractory to depletion of NR4A2 and NR4A3, indicating that NR4As regulate certain elements of the cellular response to buffered hypercapnia but that other transcription factors also contribute. Bioinformatic analysis of conserved CO2-sensitive genes implicated several novel putative CO2-sensitive transcription factors, of which the ETS Proto-Oncogene 1 Transcription Factor (ETS-1) was validated to show increased nuclear expression in buffered hypercapnia. These data give significant insights into the understanding of immune responses in patients experiencing hypercapnia.


Asunto(s)
Receptores Nucleares Huérfanos , Receptores de Esteroides , Humanos , Receptores Nucleares Huérfanos/genética , Monocitos/metabolismo , Hipercapnia , Dióxido de Carbono , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Receptores de Esteroides/metabolismo , Proteínas de Unión al ADN , Receptores de Hormona Tiroidea
2.
Immunol Cell Biol ; 101(6): 556-577, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36967673

RESUMEN

CO2 is produced during aerobic respiration. Normally, levels of CO2 in the blood are tightly regulated but pCO2 can rise (hypercapnia, pCO2 > 45 mmHg) in patients with lung diseases, for example, chronic obstructive pulmonary disease (COPD). Hypercapnia is a risk factor in COPD but may be of benefit in the context of destructive inflammation. The effects of CO2 per se, on transcription, independent of pH change are poorly understood and warrant further investigation. Here we elucidate the influence of hypercapnia on monocytes and macrophages through integration of state-of-the-art RNA-sequencing, metabolic and metabolomic approaches. THP-1 monocytes and interleukin 4-polarized primary murine macrophages were exposed to 5% CO2 versus 10% CO2 for up to 24 h in pH-buffered conditions. In hypercapnia, we identified around 370 differentially expressed genes (DEGs) under basal and about 1889 DEGs under lipopolysaccharide-stimulated conditions in monocytes. Transcripts relating to both mitochondrial and nuclear-encoded gene expression were enhanced in hypercapnia in basal and lipopolysaccharide-stimulated cells. Mitochondrial DNA content was not enhanced, but acylcarnitine species and genes associated with fatty acid metabolism were increased in hypercapnia. Primary macrophages exposed to hypercapnia also increased activation of genes associated with fatty acid metabolism and reduced activation of genes associated with glycolysis. Thus, hypercapnia elicits metabolic shifts in lipid metabolism in monocytes and macrophages under pH-buffered conditions. These data indicate that CO2 is an important modulator of monocyte transcription that can influence immunometabolic signaling in immune cells in hypercapnia. These immunometabolic insights may be of benefit in the treatment of patients experiencing hypercapnia.


Asunto(s)
Hipercapnia , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Hipercapnia/etiología , Hipercapnia/metabolismo , Dióxido de Carbono , Monocitos/metabolismo , Genes Mitocondriales , Lipopolisacáridos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Expresión Génica , Ácidos Grasos
3.
Front Immunol ; 12: 676644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248958

RESUMEN

The nuclear receptor sub-family 4 group A (NR4A) family are early response genes that encode proteins that are activated in several tissues/cells in response to a variety of stressors. The NR4A family comprises NR4A1, NR4A2 and NR4A3 of which NR4A2 and NR4A3 are under researched and less understood, particularly in the context of immune cells. NR4A expression is associated with multiple diseases e.g. arthritis and atherosclerosis and the development of NR4A-targetting molecules as therapeutics is a current focus in this research field. Here, we use a combination of RNA-sequencing coupled with strategic bioinformatic analysis to investigate the down-stream effects of NR4A2 and NR4A3 in monocytes and dissect their common and distinct signalling roles. Our data reveals that NR4A2 and NR4A3 depletion has a robust and broad-reaching effect on transcription in both the unstimulated state and in the presence of LPS. Interestingly, many of the genes affected were present in both the unstimulated and stimulated states revealing a previously unappreciated role for the NR4As in unstimulated cells. Strategic clustering and bioinformatic analysis identified both distinct and common transcriptional roles for NR4A2 and NR4A3 in monocytes. NR4A2 notably was linked by both bioinformatic clustering analysis and transcription factor interactome analysis to pathways associated with antigen presentation and regulation of MHC genes. NR4A3 in contrast was more closely linked to pathways associated with viral response. Functional studies further support our data analysis pointing towards preferential/selective roles for NR4A2 in the regulation of antigen processing with common roles for NR4A2 and NR4A3 evident with respect to cell migration. Taken together this study provides novel mechanistic insights into the role of the enigmatic nuclear receptors NR4A2 and NR4A3 in monocytes.


Asunto(s)
Presentación de Antígeno/genética , Proteínas de Unión al ADN/metabolismo , Monocitos/inmunología , Monocitos/virología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Transducción de Señal/genética , Transcriptoma/genética , Presentación de Antígeno/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Biología Computacional/métodos , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Lipopolisacáridos/farmacología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , RNA-Seq/métodos , Receptores de Esteroides/genética , Receptores de Hormona Tiroidea/genética , Células THP-1 , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...